If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50z^2-32=0
a = 50; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·50·(-32)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*50}=\frac{-80}{100} =-4/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*50}=\frac{80}{100} =4/5 $
| 5x+7=10x+32 | | 2/5(x-3)=6 | | -34+5x=(-64) | | r^2-1=8 | | x+2=2x-18 | | 3n+2(8+8n)=168 | | x+17=-7 | | 15x+14=79 | | 4(2x-2=6(3x-2) | | 4y+4=48 | | 2.25r=28+.50r | | y=0.75+0.25y | | 5x+8+3x=3–2x–5 | | 30+x=83 | | x+4/x=9 | | 2(x-4=2x-8 | | 2(×-4)=2x-8 | | 20=7•2X+6x | | F(x)=x(2)-7x+10 | | 6+4x=-21-(-5x) | | 5(x−7)=35 | | x+27/4=x+3 | | 4-2(3x-4)=2(4x+1) | | x*x*6=1.5 | | 3x+2+1x=38-2x | | -6=x-22 | | 3(5x+1)-2(6x+3)=2(x+1) | | 55=73+(-3x) | | 48+16-y+y=180 | | -2x-6(2x+21)=-224 | | 2.90x5.13=14.877 | | F(x)=0,75x-3 |